On Bending of Bernoulli-Euler Nanobeams for Nonlocal Composite Materials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Effects on Free Vibration Analysis of Nanobeams Using Nonlocal Elasticity: A Comparison Between Euler-Bernoulli and Timoshenko

In this paper, surface effects including surface elasticity, surface stress and surface density, on the free vibration analysis of Euler-Bernoulli and Timoshenko nanobeams are considered using nonlocal elasticity theory. To this end, the balance conditions between nanobeam bulk and its surfaces are considered to be satisfied assuming a linear variation for the component of the normal stress thr...

متن کامل

Analysis of Euler-Bernoulli nanobeams: A mechanical-based solution

The accuracy and efficiency of the elements proposed by finite element method (FEM) considerably depend on the interpolating functions namely shape functions used to formulate the displacement field within the element. In the present study, novel functions, namely basic displacements functions (BDFs), are introduced and exploited for structural analysis of nanobeams using finite element method ...

متن کامل

analysis of euler-bernoulli nanobeams: a mechanical-based solution

the accuracy and efficiency of the elements proposed by finite element method (fem) considerably depend on the interpolating functions namely shape functions used to formulate the displacement field within the element. in the present study, novel functions, namely basic displacements functions (bdfs), are introduced and exploited for structural analysis of nanobeams using finite element method ...

متن کامل

Nonlinear Thermal Bending for Shear Deformable Nanobeams Based on Nonlocal Elasticity Theory

Nonlinear bending of shear deformable nanobeams subject to a temperature field is investigated in this paper based on von Kármán type nonlinearity and nonlocal elasticity theory. By using the variational principle approach, new higher-order governing differential equations and the corresponding higher-order boundary conditions both in the transverse and axial directions are derived and discusse...

متن کامل

Bending Response of Nanobeams Resting on Elastic Foundation

In the present study, the finite element method is developed for the static analysis of nano-beams under the Winkler foundation and the uniform load. The small scale effect along with Eringen's nonlocal elasticity theory is taken into account. The governing equations are derived based on the minimum potential energy principle. Galerkin weighted residual method is used to obtain the finite eleme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Modelling and Simulation in Engineering

سال: 2016

ISSN: 1687-5591,1687-5605

DOI: 10.1155/2016/6369029